NSCL Directory Profile

B. Alex Brown
Professor of Physics
Theoretical Nuclear Physics
PhD, Physics, SUNY Stony Brook 1974
Joined NSCL in January 1982
Phone(517) 908-7328
Fax(517) 353-5967
Professional homepage
Photograph of B. Alex Brown

Selected Publications:
New USD Hamiltonians for the sd Shell,
B.A. Brown and W.A. Richter, Phys. Rev.
C 74, 034315 (2006)

Tensor Interaction Contributions to
Single-Particle Energies, B.A. Brown, T.
Duguet, T. Otsuka, D. Abe and T. Suzuki,
Phys. Rev. C 74, 061303(R) (2006)

Magic Numbers in Neutron-Rich Oxygen
Isotopes, B.A. Brown and W.A. Richter,
Phys. Rev. C 72, 057301 (2005)

The Nuclear Shell Model Towards the
Drip Lines, B.A. Brown, Prog. Part. Nucl.
Phys. 47, 517 (2001)

Neutron Radii in Nuclei and the Neutron
Equation of State, B.A. Brown, Phys. Rev.
Lett. 85, 5296 (2000)
My research in theoretical nuclear physics is motivated by broad questions in science: What are the fundamental particles of matter? What are the fundamental forces and their symmetries that govern their interactions? How were the elements formed during the evolution of the Universe? How do the simplicities observed in many-body systems emerge from their underlying microscopic properties?

The diverse activities within our nuclear theory group, coupled with the forefront experimental work in nuclear structure, nuclear reactions and nuclear astrophysics at NSCL provide the perfect environment for the development of new theoretical ideas. I also have collaborations with theoretical and experimental groups in many countries including Germany, France, England, Italy, Norway, Japan and South Africa.

I pursue the development of new analytical and computational tools for the description of nuclear structure, especially for nuclei far from stability. The basic theoretical tools include the configuration-interaction and energy-density functional methods. I work with collaborators to developed software for desktop computing as well for high-performance computing.

Specific topics of interest include: the structure of light nuclei, nuclei near the driplines, di-proton decay, proton and neutron densities, double β decay, tests of unitarity from Fermi β-decay, isospin non-conservation, anapole moments and parity non-conservation, neutrino-nucleus interactions, quantum chaos and the rapid-proton capture process in astrophysics.