Big bang nucleosynthesis in high precision neutrino cosmology

Evan Grohs, University of Michigan
Tuesday, Feb 21, 11:00 AM - Theory Seminar
NSCL Lecture Hall 1200

Abstract:  Cosmic microwave background Stage-IV experiments and thirty-meter-class telescopes will come on line in the next decade. The convolution of these data sets will provide on order 1% precision for observables related to neutrino cosmology. Beyond Standard Model (BSM) physics could manifest itself in slight deviations from the standard predictions of quantities such as the neutrino energy density and the primordial abundances from Big Bang Nucleosynthesis (BBN). In this talk, I will argue for the need for precise and accurate numerical calculations of BBN. I will first show the detailed evolution of the neutrino spectra as they go out of equilibrium with the plasma. The spectra are important in changing the ratio of neutrons to protons. I will show how sensitive the primordial mass fraction of helium is to the weak interaction rates which evolve the neutron-to-proton ratio. Finally, I will present an example of how BSM physics can affect BBN by instituting an asymmetry between neutrinos and antineutrinos, commonly characterized by a lepton number.